On Planar Greedy Drawings of 3-Connected Planar Graphs
نویسندگان
چکیده
A graph drawing is greedy if, for every ordered pair of vertices (x, y), there is a path from x to y such that the Euclidean distance to y decreases monotonically at every vertex of the path. Greedy drawings support a simple geometric routing scheme, in which any node that has to send a packet to a destination “greedily” forwards the packet to any neighbor that is closer to the destination than itself, according to the Euclidean distance in the drawing. In a greedy drawing such a neighbor always exists and hence this routing scheme is guaranteed to succeed. In 2004 Papadimitriou and Ratajczak stated two conjectures related to greedy drawings. The greedy embedding conjecture states that every 3-connected planar graph admits a greedy drawing. The convex greedy embedding conjecture asserts that every 3-connected planar graph admits a planar greedy drawing in which the faces are delimited by convex polygons. In 2008 the greedy embedding conjecture was settled in the positive by Leighton and Moitra. In this paper we prove that every 3-connected planar graph admits a planar greedy drawing. Apart from being a strengthening of Leighton and Moitra’s result, this theorem constitutes a natural intermediate step towards a proof of the convex greedy embedding conjecture. 1998 ACM Subject Classification G.2.2 Graph Theory
منابع مشابه
Euclidean Greedy Drawings of Trees
Greedy embedding (or drawing) is a simple and efficient strategy to route messages in wireless sensor networks. For each sourcedestination pair of nodes s, t in a greedy embedding there is always a neighbor u of s that is closer to t according to some distance metric. The existence of Euclidean greedy embeddings in R is known for certain graph classes such as 3-connected planar graphs. We compl...
متن کاملMatched Drawings of Planar Graphs
A natural way to draw two planar graphs whose vertex sets are matched is to assign each matched pair a unique y-coordinate. In this paper we introduce the concept of such matched drawings, which are a relaxation of simultaneous geometric embeddings with mapping. We study which classes of graphs allow matched drawings and show that (i) two 3-connected planar graphs or a 3-connected planar graph ...
متن کاملDrawing some planar graphs with integer edge-lengths
In this paper, we study drawings of planar graphs such that all edge lengths are integers. It was known that such drawings exist for all planar graphs with maximum degree 3. We give a different proof of this result, which is based on a simple transformation of hexagonal drawings as created by Kant. Moreover, if the graph is 3-connected then the vertices have integer coordinates that are in O(n)...
متن کاملMonotone Grid Drawings of Planar Graphs
Amonotone drawing of a planar graph G is a planar straightline drawing of G where a monotone path exists between every pair of vertices of G in some direction. Recently monotone drawings of planar graphs have been proposed as a new standard for visualizing graphs. A monotone drawing of a planar graph is a monotone grid drawing if every vertex in the drawing is drawn on a grid point. In this pap...
متن کاملReally Straight Graph Drawings
We study straight-line drawings of graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on n vertices has a plane drawing with at most 5n/2 segments and at most 2n slopes, and that every cubic 3-connected plane graph has a plane drawing with ...
متن کامل